Tiny lightning bolt explosions can vaporise the moon’s thin soil
Mini-lightning may flash in the coldest craters on the moon, melting and vapourising soil. All that sparking could have altered the surface as much as impacts from incoming rocks and dust.
The outer layer of the moon is a sort of history book recording the interactions between the moon and the rest of the solar system. To correctly interpret that history, we need to understand the mechanisms that shape it.
Source
Volcano eruptions can produce lightning!
Mount Etna spectacularly exploded on the 3rd of December 2015 for the first time in two years, sending a plume of volcanic ash scorching through the sky. The cloud was lit up with the astonishing sight of a "dirty thunderstorm", which causes lightning to streak through a cloud of ash. This natural wonder occurs when tiny fragments of rock, ash and ice rub together to produce static electricity.
Source
Lightning bolt hit Vatican twice, hours after Pope's Benedict XVI's shock resignation.
Lightning bolt hit Vatican twice, hours after Pope's Benedict XVI's shock resignation. The lightning touched the roof of St. Peter's Basilica, one of the holiest Catholic churches, hours after Pope’s shock announcement. The spooky moment, believed by some, to be a sign from God, was caught on camera by AFP photographer Filippo Monteforte.
Source
Planes get hit by lightning frequently!
Airplanes get hit by lightning mid-flight! Contrary to what you might believe, it’s a common occurrence on airplanes.
Source
...what a moonbow is?
Moonbows, also known as lunar rainbows, are the dimmer cousin of more common daylight rainbows, made possible from the refraction of raindrops by moonlight, rather than sunlight.
Moonbows are so rare because moonlight is not usually bright, and the alignment of conditions needed for them don't happen often.
According to Atmospheric Optics, a bright near-full moon must be less than 42 degrees above the horizon, illuminating rain on the opposite side of a dark sky.
Source
Upside-down lightning strikes exist and pose a great threat to wind turbines!
Upward lightning strikes initiate on the ground and head skyward. These discharges, which usually begin at the top of tall and slender structures, pose a real risk for wind turbines. An EPFL study analyzes the mechanisms underlying this poorly understood phenomenon.
Source
Lightning Makes For A Terrible Renewable Energy Source
Lightning is an impressive, energetic force of nature — so why aren't we using all that raw power to run our homes? Two reasons:
For one thing, lightning is unpredictable and really, really fast.
The second part of the answer: It's hot and loud and bright, but lightning doesn't carry as much energy as you might think.
Source
On July 13, 1977, New York City endured a 25-hour blackout after lightning strikes power lines.
On July 13, 1977, New York City endured a 25-hour blackout after lightning strikes power lines, prompting widespread arson, looting, and riots. The blackout was to many a metaphor for the gloom that had already settled on the city. An economic decline, coupled with rising crime rates and the panic-provoking (and paranoia-inducing) Son of Sam murders, had combined to make the late 1970s New York’s Dark Ages.
Source
…thundersnow???
In the midst of a bizarre winter, Montrealers were treated to a rare sight on Monday night — a winter thunderstorm. Montrealers Jolyane Limoges and Pierre-Marc Doucet managed to capture the phenomenon during a snow squall, and post it on YouTube. The phenomenon is known as thundersnow — it's like a normal thunderstorm, but with snow as the primary form of precipitation. Thundersnow events happen when a mass of cold air settles on top of warm air, coupled with moist air closer to the ground.
Source
Why is lightning white?
Static charges form in a storm composed of ice crystals and liquid water drops. Turbulent winds inside the storm cause particles to rub against one another, causing electrons to be stripped off, making the particles either negatively or positively charged.
The charges get grouped in the cloud, often negatively charged near the bottom of the cloud and positively charged up high. This is an electric field and because air is a good insulator, the electric field becomes incredibly strong. Eventually a lightning bolt happens and the flow of electrons neutralizes the electric field.
This flow of electrons through the lightning bolt creates a very hot plasma, as hot as 50,000 degrees, that emits a spectrum of electromagnetic energy. Some of this radiation is in the form of radio waves and gamma rays.
Instruments that measure these electromagnetic waves allow us to detect lightning bolts that are very far away. Visible light is also part of the spectrum of energy.
At these temperatures, laws of physics state that most of the visible light will be at a wavelength perceived as the color blue, although all wavelengths will be emitted.
The notion of color applies to our perception of what we see, not to the light itself. When we talk about the color of light, we really mean the color we sense with our eyes and then interpret with our mind.
Thus, while the peak energy is at blue wavelengths, the intensity of all the colors tends to saturate our eyes, leading us to perceive the color white – which includes all wavelengths in the visible spectrum.
Over the last 20 years scientists have discovered that lightning also shoots upward out of the top of thunderstorms into the upper atmosphere. These lightning types have distinctive colors, including red sprites and blue jets.
Source
An incredible 45 day storm turned California into a 300-mile-long sea — and it could happen again.
A massive 19th century storm in the pacific United States opened up a 300-mile-long sea that stretched through much of the central part of California. For 43 days, from late 1861 to early 1862, it rained almost nonstop in central California. Rivers running down the Sierra Nevada mountains turned into torrents that swept entire towns away.
Source
Earthquake lightning?
What was that strange light in the sky?
Many people overnight reported seeing strange lights in the sky, a phenomenon that has been reported for centuries before, during, and after earthquakes.
Seismologists aren't in agreement about the causes of the hotly-debated phenomenon - called earthquake lights or, sometimes, earthquake lightning.
And, of course, it's not clear whether the lights overnight in New Zealand were the phenomenon, or something else.
One theory suggests dormant electrical charges in rocks are triggered by the stress of the Earth's crust and plate tectonics, transferring the charge to the surface where it appears as light.
Historical reports include globes, or orbs, of glowing light, floating just above the ground or in the sky.
Much like tidal research, it is an area that is notoriously difficult to investigate. Tidal stresses and their effects on the Earth are minute, but measurable, although many seismologists remain unconvinced by theories of "tidally triggered" earthquakes.
With "earthquake light", the phenomenon is also notoriously difficult to observe, study, and measure.
GNS seismologist Caroline Holden said there were anecdotal reports of lights in the sky.
"Unfortunately, we cannot measure this phenomena or its extent with our instruments to provide a clear explanation," she said.
The phenomenon has been documented for centuries.
Hypotheses have suggested the movement of rocks could generate an electric field, others suggest quakes can lead to rocks conducting electromagnetic energy and a subsequent build up of electric charges in the upper atmosphere.
Yet another theory suggests a link between the electric charge, or current, released by the earth ripping and buckling below the surface, and the magnetic properties of rock.
The charge appears as light, so the theory goes.
People reported similar strange lights in the sky during the 2011 Christchurch earthquake.
In 1888, before a large quake around the Hanmer region, a strange glow in the sky was reported by observers.
One recent study documented hundreds of sightings of strange light, glowing, and aurora-like reports, from 1600 to the 19th century.
The study in the Seismological Research Letters suggested a charge builds up in rock inside the Earth's crust and, as it becomes rapidly unstable in a quake, expands outward.
In an earthquake, the electrical charge transfers from below the surface to the surface, or above, depending on the conductivity of the rock - appearing as light.
"When such an intense charge state reaches the Earth's surface and crosses the ground–air interface, it is expected to cause [an electric transmission and breakdown] of the air and, hence, an outburst of light.
"This process is suspected to be responsible for flashes of light coming out of the ground and expanding to considerable heights at the time when seismic waves from a large earthquake pass by."
The study said some seismologists also think the theory could account for other phenomena, such as changes to electrical fields, strange fog, haze, clouds, and low-frequency humming or radio frequency emission.
In the study, the researchers found the light was more often associated with a type of quake in which tectonic plates are wrenched apart, known as a "rift" earthquake
Source
Lightning caused deaths are fewer every year, at least in the US!
This decade will go down in weather history as one of the wildest in modern times. Since 2010, we’ve seen both the widest and strongest tornado on record touch down in Oklahoma. Mexico felt the wrath of the strongest hurricane ever recorded in terms of wind speed. The American West is enduring a years-long drought with no end in sight. But it’s not all bad news. This decade is also on track to see the lowest number of lightning deaths we’ve ever recorded in the United States, and that’s quite the accomplishment.
Source
The plane carrying the Spanish national football team home from the World Cup in Brazil was struck by lightning on the 22nd of June 2014!
The plane carrying the Spanish national football team home from the World Cup in Brazil was struck by lightning on the 22nd of June 2014 as it approached its landing in Madrid, adding to the streak of bad luck the team seemed to be on after its World Cup defeat.
Source
...that Lightning produces afterglow of gamma radiation?
Lightning can produce X-rays and gamma radiation. In the past, researchers thought that this phenomenon only lasted for a very short time, about a ten thousandth part of a second. However, the ionizing radiation of lightning appears to shine much longer than presumed: an afterglow of gamma radiation arises, which lasts up to 10,000 times longer. This is demonstrated for the first time by computer simulations of researchers from Centrum Wiskunde & Informatica (CWI) in Amsterdam. Their article 'TGF afterglows: a new radiation mechanism from thunderstorms' was published on 22 October 2017 in the scientific journal Geophysical Review Letters. This discovery can provide more insight into how lightning develops.
Terrestrial gamma flashes
‘Terrestrial gamma flashes’ were discovered about two decades ago. When lightning starts, electrons can be accelerated to very high energies, which cause an explosion of gamma radiation when these electrons crash into air molecules: the so-called terrestrial gamma flashes'. Bursts of up to a trillion (‘a billion billion’) gamma particles are measured on the ground, in airplanes and by satellites. However, these measurements are difficult, since these bursts are very focused and only last for a short time, around 0,0001 seconds. There is still much unknown about how these terrestrial gamma flashes arise and what their role is in the development of lightning. The now discovered afterglow helps to study this phenomenon.
Afterglow in all directions
CWI researcher Casper Rutjes explains what happens in the newly discovered radiation mechanism. “The radiation of a terrestrial gamma flash is so strong that nuclear reactions can take place. When the gamma rays hit the atomic nuclei of the air molecules, the protons and neutrons, of which atomic nuclei exist, can be detached. The loose neutrons can wander longer and farther than protons because they don’t have electrical charge. After a while, the neutron is captured by another atomic nucleus, which can again produce gamma radiation. The high energy of the gamma ray flash, which is used in releasing neutrons, is, so to speak, temporarily stored in the released neutrons.” The CWI researchers calculated that in this way an afterglow of new gamma radiation occurs, which lasts for 1,000 to 10,000 times longer than the gamma ray flash itself and which is not focused but radiates into all directions, which facilitates measurements.
Afterglow measured
The CWI researchers found in the scientific literature hardly any measurements that corresponded to the predictions, because almost no one was done on the right time scale. Researcher Casper Rutjes says: “Recently, our simulations have also been confirmed by experiments. Almost simultaneously, G.S. Bowers et al. of the University of California Santa Cruz, have measured a clear afterglow of gamma ray flashes in Japan, after a lightning bolt struck a wind turbine. That article, ‘Gamma-ray signatures of neutrons from a terrestrial gamma-ray flash’, also appeared now in the scientific journal Geophysical Review Letters.
Radiation risk
About the radiation risk Rutjes says: “The chance of being hit directly by a terrestrial gamma ray flash is very small. If someone in a plane is hit directly by such a narrow terrestrial gamma ray flash, this person will receive a radiation dose approximately equal to 400 times an X-ray picture (30 mSv)[1]. The afterglow that we discovered radiates into all directions, increasing the chance that a plane flying above a thunderstorm is hit, but fortunately, that radiation is much weaker. The radiation dose of the afterglow after lightning is not dangerous: less than passengers already receive through background radiation when they fly for an hour.”
The research was conducted by Casper Rutjes, Gabriel Diniz, Ivan Ferreira and Ute Ebert from Centrum Wiskunde & Informatica (CWI) in Amsterdam, and it was funded by the Netherlands Organisation for Scientific Research (NWO).
Source
Lightning protection tents exist!
The probability of getting struck by lightning is statistically very rare, but alas, storm-attributed deaths and injuries stretch into the low thousands on an annual basis. About 96% of those struck were in open environments when hit. A majority — as you may expect — come from frequent participators in outdoor activities such as hiking, camping, and climbing. Industrial designer kama jania’s ‘bolt’ line of tents was created to increase the safety of those unfortunate to be in the wrong place when the weather turns.
Source
All 11 members of a football team were killed by a lightning bolt during a match.
All 11 members of a football team were killed by a bolt of lightning at during a match in the Democratic Republic of Congo. According to a Congolese newspaper that reported the incident, the other team was left unharmed!
Source
A teenage girl survived a terrifying lightning strike, saved by her iPod wire!
A teenage girl survived a terrifying lightning strike after she was saved by the wire of her iPod. Schoolgirl Sophie Frost and her boyfriend Mason Billington, both 14, stopped to shelter under a tree when a storm struck as they were walking near their homes. They were struck by a lightning but survived! Doctors believe Sophie survived the 300,000-volt surge only because it travelled through the gadget’s wire, diverting it away from her vital organs.
Source
Struck by lightning but died drawing.
A 21-year-old man drowned at sea following a lightning strike as he was returning to shore in a boat after a fishing trip on Sunday, 17/01/2016. Ng Young Ching had apparently fallen into the sea in the vicinity of the Sungai Ayam Lighthouse in Senggarang near Batu Pahat at about 5pm as he was returning to the Sungai Ayam fishing jetty, Batu Pahat Maritime Base maritime enforcement chief Lt Commander (Maritime) Muhammad Zulkarnain Abdullah said yesterday.
Source
In 1769 a single lightning bolt killed 3000 people in Brescia, Italy.
In 1769 a single lightning bolt killed 3000 people in Brescia, Italy, and caused a large part of the city to be destroyed! Over 200,000 pounds of explosives were stored in the Church of San Nazaro on Brescia when a single lightning bolt struck its tower. The resulting explosion and fire killed 3000 people and destroyed a large part of the city.
Source

