An "of the blue" bolt evidence!
An 11-year-old western Pennsylvania girl is recovering after she was struck by a bolt from the blue. According to Lisa Wehrle the sun was shining when her daughter, Britney, was struck by lightning Friday, apparently from a storm several miles away.
Source
…thundersnow???
In the midst of a bizarre winter, Montrealers were treated to a rare sight on Monday night — a winter thunderstorm. Montrealers Jolyane Limoges and Pierre-Marc Doucet managed to capture the phenomenon during a snow squall, and post it on YouTube. The phenomenon is known as thundersnow — it's like a normal thunderstorm, but with snow as the primary form of precipitation. Thundersnow events happen when a mass of cold air settles on top of warm air, coupled with moist air closer to the ground.
Source
Planes get hit by lightning frequently!
Airplanes get hit by lightning mid-flight! Contrary to what you might believe, it’s a common occurrence on airplanes.
Source
...what a moonbow is?
Moonbows, also known as lunar rainbows, are the dimmer cousin of more common daylight rainbows, made possible from the refraction of raindrops by moonlight, rather than sunlight.
Moonbows are so rare because moonlight is not usually bright, and the alignment of conditions needed for them don't happen often.
According to Atmospheric Optics, a bright near-full moon must be less than 42 degrees above the horizon, illuminating rain on the opposite side of a dark sky.
Source
Volcano eruptions can produce lightning!
Mount Etna spectacularly exploded on the 3rd of December 2015 for the first time in two years, sending a plume of volcanic ash scorching through the sky. The cloud was lit up with the astonishing sight of a "dirty thunderstorm", which causes lightning to streak through a cloud of ash. This natural wonder occurs when tiny fragments of rock, ash and ice rub together to produce static electricity.
Source
...Lightning strikes Catatumbo River in northern Venezuela 280 times per hour, 260 nights per year!
A lightning storm rages almost constantly at the mouth of the Catatumbo River in northern Venezuela, with bolts striking up to 280 times per hour for 10 hours a day, on 260 nights every year. That's 28 lightning strikes per minute for those nights - and about 1.2 million lightning strikes each year.
Venezuela, home of the delicious pabellón criollo, has been experiencing the Catatumbo lightning for hundreds of years now. It comes from storm clouds that amass more than 3,200 feet above the spot where the Catatumbo River flows into Lake Maracaibo. According to meteorologists, winds going across the lake and its surrounding swamps are likely responsible for the storms. The swamps are plains surrounded by mountains - the Andes (home of the first cultivation of quinoa), the Perijá Mountains, and the Cordillera de Mérida - and the combination of heat and moisture in the area creates electrical charges that - when met with wind destabilized by the mountain ridges - turns into lightning and thunderstorms.
Light flashes from the storm can be seen up to 25 miles away, earning the phenomenon the nickname "The Maracaibo Beacon," and it's been used by ships for navigation as a result.
The frequency of the lightning strikes changes both within the year and from one year to the next. October's wet season is peak time for the storms, while they generally calm down in January and February. In fact, there was a break in the storm due to a drought between January and March of 2010, and locals feared that the phenomenon was over for good.
The Catatumbo lightning holds a special place in the heart of Venezuelans, because it may have been partially responsible for the nation's independence. An attempted surprise attack led by British navigator Sir Francis Drake on the Spanish army was spoiled by the bright lightning one night in 1595, a story that was later recounted in Lope de Vega's epic La Dragontea a few years later. Years later, in the early nineteenth century, the Spanish army itself attempted a sneak attack on Maracaibo in order to take back the country towards the end of the Venezuelan War of Independence. Again, the Catatumbo lightning lit up the landscape, thwarting the invasion and allowing Venezuela's beloved revolutionary hero, Simón Bolívar, and his fleet to win one of the last and most important battles in the wars against the Spanish for independence.
The Catatumbo lightning has also been responsible for producing more ozone at the mouth of the Catatumbo than any other place in the world. Scientists have expressed doubt, however, that this will have any effect on the world's ozone layer, due to the lightning's instability. Its effect on tourism, however, is not in doubt, as sightseers have flocked to the region to join nighttime tours to see the lightning. It's a great addition to any South American itinerary.
Source
Storm sank 4 ships on Lake Erie in 1916
Some call it Lake Erie’s “perfect storm,” one so powerful 100 years ago that it caused four ships to sink within 18 hours.
In all, 49 lives were lost in the lake’s Canadian waters, but those crew members are being remembered right here in Toledo.
“This massive [storm] affected communities across the lake,” said Carrie Snowden, archaeological director for the Toledo-based National Museum of the Great Lakes, and who is giving a presentation about the storm during a lecture series today. “This storm is Lake Erie’s own perfect storm; this coming together of different weather fronts to create something horrific on top of Lake Erie. The human loss is of greater significance.”
Source
All 11 members of a football team were killed by a lightning bolt during a match.
All 11 members of a football team were killed by a bolt of lightning at during a match in the Democratic Republic of Congo. According to a Congolese newspaper that reported the incident, the other team was left unharmed!
Source
Lightning Makes For A Terrible Renewable Energy Source
Lightning is an impressive, energetic force of nature — so why aren't we using all that raw power to run our homes? Two reasons:
For one thing, lightning is unpredictable and really, really fast.
The second part of the answer: It's hot and loud and bright, but lightning doesn't carry as much energy as you might think.
Source
Earthquake lightning?
What was that strange light in the sky?
Many people overnight reported seeing strange lights in the sky, a phenomenon that has been reported for centuries before, during, and after earthquakes.
Seismologists aren't in agreement about the causes of the hotly-debated phenomenon - called earthquake lights or, sometimes, earthquake lightning.
And, of course, it's not clear whether the lights overnight in New Zealand were the phenomenon, or something else.
One theory suggests dormant electrical charges in rocks are triggered by the stress of the Earth's crust and plate tectonics, transferring the charge to the surface where it appears as light.
Historical reports include globes, or orbs, of glowing light, floating just above the ground or in the sky.
Much like tidal research, it is an area that is notoriously difficult to investigate. Tidal stresses and their effects on the Earth are minute, but measurable, although many seismologists remain unconvinced by theories of "tidally triggered" earthquakes.
With "earthquake light", the phenomenon is also notoriously difficult to observe, study, and measure.
GNS seismologist Caroline Holden said there were anecdotal reports of lights in the sky.
"Unfortunately, we cannot measure this phenomena or its extent with our instruments to provide a clear explanation," she said.
The phenomenon has been documented for centuries.
Hypotheses have suggested the movement of rocks could generate an electric field, others suggest quakes can lead to rocks conducting electromagnetic energy and a subsequent build up of electric charges in the upper atmosphere.
Yet another theory suggests a link between the electric charge, or current, released by the earth ripping and buckling below the surface, and the magnetic properties of rock.
The charge appears as light, so the theory goes.
People reported similar strange lights in the sky during the 2011 Christchurch earthquake.
In 1888, before a large quake around the Hanmer region, a strange glow in the sky was reported by observers.
One recent study documented hundreds of sightings of strange light, glowing, and aurora-like reports, from 1600 to the 19th century.
The study in the Seismological Research Letters suggested a charge builds up in rock inside the Earth's crust and, as it becomes rapidly unstable in a quake, expands outward.
In an earthquake, the electrical charge transfers from below the surface to the surface, or above, depending on the conductivity of the rock - appearing as light.
"When such an intense charge state reaches the Earth's surface and crosses the ground–air interface, it is expected to cause [an electric transmission and breakdown] of the air and, hence, an outburst of light.
"This process is suspected to be responsible for flashes of light coming out of the ground and expanding to considerable heights at the time when seismic waves from a large earthquake pass by."
The study said some seismologists also think the theory could account for other phenomena, such as changes to electrical fields, strange fog, haze, clouds, and low-frequency humming or radio frequency emission.
In the study, the researchers found the light was more often associated with a type of quake in which tectonic plates are wrenched apart, known as a "rift" earthquake
Source
...that Lightning produces afterglow of gamma radiation?
Lightning can produce X-rays and gamma radiation. In the past, researchers thought that this phenomenon only lasted for a very short time, about a ten thousandth part of a second. However, the ionizing radiation of lightning appears to shine much longer than presumed: an afterglow of gamma radiation arises, which lasts up to 10,000 times longer. This is demonstrated for the first time by computer simulations of researchers from Centrum Wiskunde & Informatica (CWI) in Amsterdam. Their article 'TGF afterglows: a new radiation mechanism from thunderstorms' was published on 22 October 2017 in the scientific journal Geophysical Review Letters. This discovery can provide more insight into how lightning develops.
Terrestrial gamma flashes
‘Terrestrial gamma flashes’ were discovered about two decades ago. When lightning starts, electrons can be accelerated to very high energies, which cause an explosion of gamma radiation when these electrons crash into air molecules: the so-called terrestrial gamma flashes'. Bursts of up to a trillion (‘a billion billion’) gamma particles are measured on the ground, in airplanes and by satellites. However, these measurements are difficult, since these bursts are very focused and only last for a short time, around 0,0001 seconds. There is still much unknown about how these terrestrial gamma flashes arise and what their role is in the development of lightning. The now discovered afterglow helps to study this phenomenon.
Afterglow in all directions
CWI researcher Casper Rutjes explains what happens in the newly discovered radiation mechanism. “The radiation of a terrestrial gamma flash is so strong that nuclear reactions can take place. When the gamma rays hit the atomic nuclei of the air molecules, the protons and neutrons, of which atomic nuclei exist, can be detached. The loose neutrons can wander longer and farther than protons because they don’t have electrical charge. After a while, the neutron is captured by another atomic nucleus, which can again produce gamma radiation. The high energy of the gamma ray flash, which is used in releasing neutrons, is, so to speak, temporarily stored in the released neutrons.” The CWI researchers calculated that in this way an afterglow of new gamma radiation occurs, which lasts for 1,000 to 10,000 times longer than the gamma ray flash itself and which is not focused but radiates into all directions, which facilitates measurements.
Afterglow measured
The CWI researchers found in the scientific literature hardly any measurements that corresponded to the predictions, because almost no one was done on the right time scale. Researcher Casper Rutjes says: “Recently, our simulations have also been confirmed by experiments. Almost simultaneously, G.S. Bowers et al. of the University of California Santa Cruz, have measured a clear afterglow of gamma ray flashes in Japan, after a lightning bolt struck a wind turbine. That article, ‘Gamma-ray signatures of neutrons from a terrestrial gamma-ray flash’, also appeared now in the scientific journal Geophysical Review Letters.
Radiation risk
About the radiation risk Rutjes says: “The chance of being hit directly by a terrestrial gamma ray flash is very small. If someone in a plane is hit directly by such a narrow terrestrial gamma ray flash, this person will receive a radiation dose approximately equal to 400 times an X-ray picture (30 mSv)[1]. The afterglow that we discovered radiates into all directions, increasing the chance that a plane flying above a thunderstorm is hit, but fortunately, that radiation is much weaker. The radiation dose of the afterglow after lightning is not dangerous: less than passengers already receive through background radiation when they fly for an hour.”
The research was conducted by Casper Rutjes, Gabriel Diniz, Ivan Ferreira and Ute Ebert from Centrum Wiskunde & Informatica (CWI) in Amsterdam, and it was funded by the Netherlands Organisation for Scientific Research (NWO).
Source
Lightning knocked out Internet on Cayman’s Island!
A lightning strike along one of the submarine cables that connects Cayman’s Internet to the rest of the world knocked out Internet service for many on Grand Cayman Tuesday evening. The lightning hit a landing station at the U.S. end of the Maya-1 cable system between Cancun, Mexico and Hollywood, Florida, on Tuesday afternoon, affecting Internet access and some phone service in Cayman, according to local telecom companies and regulators.
Source
…about the Rochester ice storm?
The 1991 Ice Storm was one of the most damaging storms in Rochester history. It all began 25 years ago on Thursday. We took a look back with a woman who experienced it herself. For residents in our area that were around, the ice storm that began 25 years ago was an event unlike most had ever seen before and the memories of that storm are still as vivid and fresh as they were in 1991.
Source
How Hot Is Lightning?
Lightning is one of the most destructive forces in nature. But for all the folklore and legends amassed over human history on lightning, we know surprisingly little about the inner workings of this powerful phenomenon, including something as simple as how the current that flows through a thunder-inducing flash is related to the temperature of the strike.
"The basic physics of lightning, such as lightning initiation and lightning propagation, is not fully understood at this point," said Robert Moore, a lightning researcher from University of Florida in Gainesville.
"We know the basics, but not the details. So when anybody makes headway, it is major news."
Lightning causes more than $5 billion in damages every year in the U.S., as well as more fatalities than hurricanes.
"A direct hit from a lightning strike can melt a power cable or start a forest fire, where the amount of heat from the lightning plays a major role," said Xiangchao Li, a scientist from China who specializes in lightning research. Li and his team discovered a mathematical relationship between the current intensity and the temperature inside lightning. Their result was published last month in the journal Scientific Reports.
Although there are approximately 100,000 lightning strikes on Earth every single day, the randomness of the occurrences makes it difficult for scientists to study them in an effective or systematic way. So until Thor, the Norse god of lightning as well as other meteorological events, joins a lightning research team, scientists are left to their own devices.
Luckily such a device does exist. Known as an impulse current generator system, the device can create artificial lightning with currents up to tens of thousands of amperes. For perspective, a household or automotive fuse is usually rated well below a hundred amperes, and an electric current of just a few amperes can easily kill you. A natural lightning strike typically carries around 20-30,000 amperes of current. Certainly there are other factors such as size and setting of natural lightning that cannot be replicated in a laboratory, but just in terms of sheer current output, the lightning generated by the device can really give Thor a run for his money.
By using their artificial lightning system, Li and his team were able to dial up lightning strikes at will, with currents between 5,000 to 50,000 amperes. This resulted in artificial lightning strikes with temperatures as high as 17,000 F, twice as hot as the surface of the Sun.
This creates a new problem -- at such high temperatures, a normal thermometer would explode. And even if it didn't, it wouldn't react quickly enough to register the temperature of the lightning strike. Fortunately, there is "light" in "lightning." Li and his team were able to record the lightning's temperature within a millisecond by measuring the intensity of the light at various wavelengths.
After striking lightning at the same place over and over again, they concluded that the relationship between the current and temperature of lightning is a highly logarithmic one, meaning that the temperature difference between lightning strikes with 1,000 and 10,000 amperes is similar to those with 10,000 and 100,000 amperes. This result provides solid evidence for previous theoretical predictions that lacked the support of data.
"The next step would be to compare with measurements from rocket triggered lightning, or natural lightning, which can be done throughout the U.S. or China," Moore suggested.
That's right, rocket-triggered lightning. Essentially a glorified version of Benjamin Franklin's wired kite, scientists today have ways to siphon natural lightning from the sky by launching an electrically grounded rocket, as shown in the video below.
With a better understanding of the physics of lightning, scientists can help engineers to improve current protocols and infrastructures to better deal with lightning -- from weather warning systems to the design of power grids. Perhaps we can one day limit the power of Thor to only smiting Loki on the silver screen.
Source
Struck by lightning but died drawing.
A 21-year-old man drowned at sea following a lightning strike as he was returning to shore in a boat after a fishing trip on Sunday, 17/01/2016. Ng Young Ching had apparently fallen into the sea in the vicinity of the Sungai Ayam Lighthouse in Senggarang near Batu Pahat at about 5pm as he was returning to the Sungai Ayam fishing jetty, Batu Pahat Maritime Base maritime enforcement chief Lt Commander (Maritime) Muhammad Zulkarnain Abdullah said yesterday.
Source
In 1769 a single lightning bolt killed 3000 people in Brescia, Italy.
In 1769 a single lightning bolt killed 3000 people in Brescia, Italy, and caused a large part of the city to be destroyed! Over 200,000 pounds of explosives were stored in the Church of San Nazaro on Brescia when a single lightning bolt struck its tower. The resulting explosion and fire killed 3000 people and destroyed a large part of the city.
Source
Lightning can strike at sea!
In a rare incident of its kind, a coastguard diver and a citizen were killed after they were struck by a lightning bolt off Khairan beach of Kuwait on the 8th of May 2016.
The Interior Ministry said in a statement that a jet ski of citizen Saad Khaled Al-Shereeda broke down and a coastguard boat was dispatched to rescue him.
The ministry added that the coastguard diver, Abdullah Othman Al-Doussary, jumped in the water to help the man, but they were both struck by lightning and were killed instantly.
In October last year, an Asian was killed by lightning in northern Kuwait during a freak storm. It is estimated that 6,000 to as many as 24,000 people are killed around the world by lightning strikes every year.
Source
Animals get struck by lightning, too.
Lightning strikes about 100 times every second of the day, mainly in warmer regions of the world. About 240,000 people are injured by lightning every year, and 24,000 die after being struck. But humans aren’t the only victims of lightning — animals are, too, though reports of such deaths are far rarer than the deaths themselves.
Source
On April 3, 1856 a lightning strike obliterated 4000 people in Rhodes, Greece.
On April 3, 1856 a lightning strike obliterated 4000 people. The lightning stroke the Palace of the Grand Masters, Rhodes, Greece, which was used as an ammo storage, resulting in a massive explosion that killed 4,000 people in and around the Palace, reducing it to a pile of rubble that sat on Rhodes for almost a century.
Source
A 36-year-old diver was killed after lightning struck his oxygen tank!
A 36-year-old diver was killed off a Florida beach after lightning struck his oxygen tank, authorities have said. The man was diving with three others off a boat near Deerfield Beach on Sunday. When he surfaced, ‘lighting struck his tank,’ said Deerfield Beach fire Chief Gary Fernaays. ‘He was approximately 30 feet from the boat at the time.’
Source