Did you know archive

...that Lightning produces afterglow of gamma radiation?

Lightning can produce X-rays and gamma radiation. In the past, researchers thought that this phenomenon only lasted for a very short time, about a ten thousandth part of a second. However, the ionizing radiation of lightning appears to shine much longer than presumed: an afterglow of gamma radiation arises, which lasts up to 10,000 times longer. This is demonstrated for the first time by computer simulations of researchers from Centrum Wiskunde & Informatica (CWI) in Amsterdam. Their article 'TGF afterglows: a new radiation mechanism from thunderstorms' was published on 22 October 2017 in the scientific journal Geophysical Review Letters. This discovery can provide more insight into how lightning develops. Terrestrial gamma flashes ‘Terrestrial gamma flashes’ were discovered about two decades ago. When lightning starts, electrons can be accelerated to very high energies, which cause an explosion of gamma radiation when these electrons crash into air molecules: the so-called terrestrial gamma flashes'. Bursts of up to a trillion (‘a billion billion’) gamma particles are measured on the ground, in airplanes and by satellites. However, these measurements are difficult, since these bursts are very focused and only last for a short time, around 0,0001 seconds. There is still much unknown about how these terrestrial gamma flashes arise and what their role is in the development of lightning. The now discovered afterglow helps to study this phenomenon. Afterglow in all directions CWI researcher Casper Rutjes explains what happens in the newly discovered radiation mechanism. “The radiation of a terrestrial gamma flash is so strong that nuclear reactions can take place. When the gamma rays hit the atomic nuclei of the air molecules, the protons and neutrons, of which atomic nuclei exist, can be detached. The loose neutrons can wander longer and farther than protons because they don’t have electrical charge. After a while, the neutron is captured by another atomic nucleus, which can again produce gamma radiation. The high energy of the gamma ray flash, which is used in releasing neutrons, is, so to speak, temporarily stored in the released neutrons.” The CWI researchers calculated that in this way an afterglow of new gamma radiation occurs, which lasts for 1,000 to 10,000 times longer than the gamma ray flash itself and which is not focused but radiates into all directions, which facilitates measurements. Afterglow measured The CWI researchers found in the scientific literature hardly any measurements that corresponded to the predictions, because almost no one was done on the right time scale. Researcher Casper Rutjes says: “Recently, our simulations have also been confirmed by experiments. Almost simultaneously, G.S. Bowers et al. of the University of California Santa Cruz, have measured a clear afterglow of gamma ray flashes in Japan, after a lightning bolt struck a wind turbine. That article, ‘Gamma-ray signatures of neutrons from a terrestrial gamma-ray flash’, also appeared now in the scientific journal Geophysical Review Letters. Radiation risk About the radiation risk Rutjes says: “The chance of being hit directly by a terrestrial gamma ray flash is very small. If someone in a plane is hit directly by such a narrow terrestrial gamma ray flash, this person will receive a radiation dose approximately equal to 400 times an X-ray picture (30 mSv)[1]. The afterglow that we discovered radiates into all directions, increasing the chance that a plane flying above a thunderstorm is hit, but fortunately, that radiation is much weaker. The radiation dose of the afterglow after lightning is not dangerous: less than passengers already receive through background radiation when they fly for an hour.” The research was conducted by Casper Rutjes, Gabriel Diniz, Ivan Ferreira and Ute Ebert from Centrum Wiskunde & Informatica (CWI) in Amsterdam, and it was funded by the Netherlands Organisation for Scientific Research (NWO).
Source

Lightning knocked out Internet on Cayman’s Island!

A lightning strike along one of the submarine cables that connects Cayman’s Internet to the rest of the world knocked out Internet service for many on Grand Cayman Tuesday evening. The lightning hit a landing station at the U.S. end of the Maya-1 cable system between Cancun, Mexico and Hollywood, Florida, on Tuesday afternoon, affecting Internet access and some phone service in Cayman, according to local telecom companies and regulators.
Source

On July 13, 1977, New York City endured a 25-hour blackout after lightning strikes power lines.

On July 13, 1977, New York City endured a 25-hour blackout after lightning strikes power lines, prompting widespread arson, looting, and riots. The blackout was to many a metaphor for the gloom that had already settled on the city. An economic decline, coupled with rising crime rates and the panic-provoking (and paranoia-inducing) Son of Sam murders, had combined to make the late 1970s New York’s Dark Ages.
Source

Upside-down lightning strikes exist and pose a great threat to wind turbines!

Upward lightning strikes initiate on the ground and head skyward. These discharges, which usually begin at the top of tall and slender structures, pose a real risk for wind turbines. An EPFL study analyzes the mechanisms underlying this poorly understood phenomenon.
Source

Struck by lightning but died drawing.

A 21-year-old man drowned at sea following a lightning strike as he was returning to shore in a boat after a fishing trip on Sunday, 17/01/2016. Ng Young Ching had apparently fallen into the sea in the vicinity of the Sungai Ayam Lighthouse in Senggarang near Batu Pahat at about 5pm as he was returning to the Sungai Ayam fishing jetty, Batu Pahat Maritime Base maritime enforcement chief Lt Commander (Maritime) Muhammad Zulkarnain Abdullah said yesterday.
Source

In 1769 a single lightning bolt killed 3000 people in Brescia, Italy.

In 1769 a single lightning bolt killed 3000 people in Brescia, Italy, and caused a large part of the city to be destroyed! Over 200,000 pounds of explosives were stored in the Church of San Nazaro on Brescia when a single lightning bolt struck its tower. The resulting explosion and fire killed 3000 people and destroyed a large part of the city.
Source

On the 21st of August 2011, a thunderstorm forced the Pope to cut short his speech!

On the 21st of August 2011, a thunderstorm forced the pope to cut short his speech to an estimated 1 million young pilgrims gathered at a Madrid airfield to mark World Youth Day. As rain soaked the crowd and lightning lit up the night sky on Saturday, the 84-year-old pontiff skipped the bulk of the speech and delivered brief greetings in half a dozen languages.
Source

All 11 members of a football team were killed by a lightning bolt during a match.

All 11 members of a football team were killed by a bolt of lightning at during a match in the Democratic Republic of Congo. According to a Congolese newspaper that reported the incident, the other team was left unharmed!
Source

Earthquake lightning?

What was that strange light in the sky? Many people overnight reported seeing strange lights in the sky, a phenomenon that has been reported for centuries before, during, and after earthquakes. Seismologists aren't in agreement about the causes of the hotly-debated phenomenon - called earthquake lights or, sometimes, earthquake lightning. And, of course, it's not clear whether the lights overnight in New Zealand were the phenomenon, or something else. One theory suggests dormant electrical charges in rocks are triggered by the stress of the Earth's crust and plate tectonics, transferring the charge to the surface where it appears as light. Historical reports include globes, or orbs, of glowing light, floating just above the ground or in the sky. Much like tidal research, it is an area that is notoriously difficult to investigate. Tidal stresses and their effects on the Earth are minute, but measurable, although many seismologists remain unconvinced by theories of "tidally triggered" earthquakes. With "earthquake light", the phenomenon is also notoriously difficult to observe, study, and measure.​ GNS seismologist Caroline Holden said there were anecdotal reports of lights in the sky. "Unfortunately, we cannot measure this phenomena or its extent with our instruments to provide a clear explanation," she said. The phenomenon has been documented for centuries. Hypotheses have suggested the movement of rocks could generate an electric field, others suggest quakes can lead to rocks conducting electromagnetic energy and a subsequent build up of electric charges in the upper atmosphere. Yet another theory suggests a link between the electric charge, or current, released by the earth ripping and buckling below the surface, and the magnetic properties of rock. The charge appears as light, so the theory goes. People reported similar strange lights in the sky during the 2011 Christchurch earthquake. In 1888, before a large quake around the Hanmer region, a strange glow in the sky was reported by observers. One recent study documented hundreds of sightings of strange light, glowing, and aurora-like reports, from 1600 to the 19th century. The study in the Seismological Research Letters suggested a charge builds up in rock inside the Earth's crust and, as it becomes rapidly unstable in a quake, expands outward. In an earthquake, the electrical charge transfers from below the surface to the surface, or above, depending on the conductivity of the rock - appearing as light. "When such an intense charge state reaches the Earth's surface and crosses the ground–air interface, it is expected to cause [an electric transmission and breakdown] of the air and, hence, an outburst of light. "This process is suspected to be responsible for flashes of light coming out of the ground and expanding to considerable heights at the time when seismic waves from a large earthquake pass by." The study said some seismologists also think the theory could account for other phenomena, such as changes to electrical fields, strange fog, haze, clouds, and low-frequency humming or radio frequency emission. In the study, the researchers found the light was more often associated with a type of quake in which tectonic plates are wrenched apart, known as a "rift" earthquake
Source

A United States park ranger was hit by lightning on seven different occasions and survived all of them. He died from a self-inflicted gunshot wound at the age of 71 over an unrequited love!

Roy Cleveland Sullivan was a United States park ranger in Shenandoah National Park in Virginia. Between 1942 and 1977, Sullivan was hit by lightning on seven different occasions and survived all of them. For this reason, he gained a nickname "Human Lightning Conductor" or "Human Lightning Rod". Sullivan is recognized by Guinness World Records as the person struck by lightning more recorded times than any other human being. He died from a self-inflicted gunshot wound at the age of 71 over an unrequited love.
Source

…thundersnow???

In the midst of a bizarre winter, Montrealers were treated to a rare sight on Monday night — a winter thunderstorm. Montrealers Jolyane Limoges and Pierre-Marc Doucet managed to capture the phenomenon during a snow squall, and post it on YouTube. The phenomenon is known as thundersnow — it's like a normal thunderstorm, but with snow as the primary form of precipitation. Thundersnow events happen when a mass of cold air settles on top of warm air, coupled with moist air closer to the ground.
Source

Google lost data by lightning strikes!

On 2015, during an August thunderstorm, Google lost data by lightning strikes! Google says data has been wiped from discs at one of its data centres in Belgium - after the local power grid was struck by lightning four times.
Source

Which are the places more likely to be struck by lightning?

The place most likely to be struck by lightning in the world is one spot above Lake Maracaibo in Venezuela, according to new data. Over this mountain lake, there was a lightning show an astounding 297 days out of 365 days a year, on average. Even more surprising, the lightning strikes didn't occur just over the massive lake, but at one particular spot -- the point where the lake empties into the Catatumbo River, researchers said Dec. 14 at the annual meeting of the American Geophysical Union.
Source

Tiny lightning bolt explosions can vaporise the moon’s thin soil

Mini-lightning may flash in the coldest craters on the moon, melting and vapourising soil. All that sparking could have altered the surface as much as impacts from incoming rocks and dust. The outer layer of the moon is a sort of history book recording the interactions between the moon and the rest of the solar system. To correctly interpret that history, we need to understand the mechanisms that shape it.
Source

Almost half of drivers speed to avoid hail storms!

According to research from RACQ nearly half of Queensland, Australia drivers will speed to avoid hail damage to their cars. The motoring club and insurer's research revealed 47% of motorists admitted to speeding to avoid hail damage to their cars - up from 44% last year. The research also found female drivers were more likely to speed (54.2%) than males (52%) when a storm hits.
Source

Animals can have storm phobia!

According to WbMD, storm phobia is very real and should be taken seriously. Loyal masters are often awaken in the middle of the night – not from the thunder – but from the uninvited pet jumping in the bed looking for comfort from the storm. Cases of storm phobia in pets can be much more severe and should not be ignored. They say some pets have been known to “claw through drywall, chew carpets, or break through windows in their escalating panic.”
Source

Planes get hit by lightning frequently!

Airplanes get hit by lightning mid-flight! Contrary to what you might believe, it’s a common occurrence on airplanes.
Source

How Hot Is Lightning?

Lightning is one of the most destructive forces in nature. But for all the folklore and legends amassed over human history on lightning, we know surprisingly little about the inner workings of this powerful phenomenon, including something as simple as how the current that flows through a thunder-inducing flash is related to the temperature of the strike. "The basic physics of lightning, such as lightning initiation and lightning propagation, is not fully understood at this point," said Robert Moore, a lightning researcher from University of Florida in Gainesville. "We know the basics, but not the details. So when anybody makes headway, it is major news." Lightning causes more than $5 billion in damages every year in the U.S., as well as more fatalities than hurricanes. "A direct hit from a lightning strike can melt a power cable or start a forest fire, where the amount of heat from the lightning plays a major role," said Xiangchao Li, a scientist from China who specializes in lightning research. Li and his team discovered a mathematical relationship between the current intensity and the temperature inside lightning. Their result was published last month in the journal Scientific Reports. Although there are approximately 100,000 lightning strikes on Earth every single day, the randomness of the occurrences makes it difficult for scientists to study them in an effective or systematic way. So until Thor, the Norse god of lightning as well as other meteorological events, joins a lightning research team, scientists are left to their own devices. Luckily such a device does exist. Known as an impulse current generator system, the device can create artificial lightning with currents up to tens of thousands of amperes. For perspective, a household or automotive fuse is usually rated well below a hundred amperes, and an electric current of just a few amperes can easily kill you. A natural lightning strike typically carries around 20-30,000 amperes of current. Certainly there are other factors such as size and setting of natural lightning that cannot be replicated in a laboratory, but just in terms of sheer current output, the lightning generated by the device can really give Thor a run for his money. By using their artificial lightning system, Li and his team were able to dial up lightning strikes at will, with currents between 5,000 to 50,000 amperes. This resulted in artificial lightning strikes with temperatures as high as 17,000 F, twice as hot as the surface of the Sun. This creates a new problem -- at such high temperatures, a normal thermometer would explode. And even if it didn't, it wouldn't react quickly enough to register the temperature of the lightning strike. Fortunately, there is "light" in "lightning." Li and his team were able to record the lightning's temperature within a millisecond by measuring the intensity of the light at various wavelengths. After striking lightning at the same place over and over again, they concluded that the relationship between the current and temperature of lightning is a highly logarithmic one, meaning that the temperature difference between lightning strikes with 1,000 and 10,000 amperes is similar to those with 10,000 and 100,000 amperes. This result provides solid evidence for previous theoretical predictions that lacked the support of data. "The next step would be to compare with measurements from rocket triggered lightning, or natural lightning, which can be done throughout the U.S. or China," Moore suggested. That's right, rocket-triggered lightning. Essentially a glorified version of Benjamin Franklin's wired kite, scientists today have ways to siphon natural lightning from the sky by launching an electrically grounded rocket, as shown in the video below. With a better understanding of the physics of lightning, scientists can help engineers to improve current protocols and infrastructures to better deal with lightning -- from weather warning systems to the design of power grids. Perhaps we can one day limit the power of Thor to only smiting Loki on the silver screen.
Source

Lightning protection tents exist!

The probability of getting struck by lightning is statistically very rare, but alas, storm-attributed deaths and injuries stretch into the low thousands on an annual basis. About 96% of those struck were in open environments when hit. A majority — as you may expect — come from frequent participators in outdoor activities such as hiking, camping, and climbing. Industrial designer kama jania’s ‘bolt’ line of tents was created to increase the safety of those unfortunate to be in the wrong place when the weather turns.
Source

There are 5 ways to be struck by lightning!

1. Direct strike 2. Side flash 3. Ground current 4. Conduction 5.Streamers
Source